Question 1:

Kando, the mathematical kangaroo always hops (i.e jumps) according in mathematical rules, Dne day, Kando decides to go hopping according to the Following rules   The length af odd number hope (1st, 3rd ,5th hop etc). In metres to given by the arithmetic series , tn=4(n-1) where n=1,3,5 is an odd number  The length of even number hops (2nd,4th,6th hop etc) in meters, is given by the geometric series TN=19263(12)N-22  If the length of a hop is negative according to the relevant series Kando has the prescribed distance backwards  (i)Write down the first term and common difference for the series   (ii) Write down the first term and common ratio for the series Tn   (iii) Find where kando is relative to her starting point after 12 hops   (iv) Find the total distance travelled backwards in the first 16 hops

Question 2:

Exactly 12 years ago, Paul took out a mortgage of $500 000 to buy a house. The loan was taken over 25 years at 12% p.a. with interest compounding monthly and Paul makes monthly repayments. Paul has just won a lottery prize of $400 000.  Show that the prize is insufficient to pay out the remaining debt.  How many payments will still be required to pay off the debt? ) (You may assume that Paul puts the entire prize into paying off the debt.

Question 3:

A particle moves in a straight line so that its displacement, in meters, is given by x=4t3-12t2 where t is the time in seconds. At what time after t = 0 is the particle at rest? 

(A) t = 1 

(B) t = 2 

(C) t = 3 

(D) t = 4

Question 4:
  1. What are the solutions of x2 < 9?
Question 5:

Find the limiting sum of the geometric series 3+12+112+....

Question 6:
  1. A particle is moving along the x-axis. The displacement of the particle after seconds is given by t2 - 3t metres.
Question 7:
  1. The diagram shows a sketch of the gradient function  y=f'x

passing through the points A, B, C and D.

 

 

 

 

 

 

 

 

 

 

 

which point represents the horizontal point of inflection of the curve y=fx?

Question 8:

Solve  |2+ 3 | < 9 .

Question 9:

An Australian airline restricts the size of cabin baggage allowed onto 6 aircraft. For bags in the  recommended shape of a rectangular prism, the sum of the  length, breadth and height should be equal to 1 15 cm.   Sandy buys a bag in the recommended shape, with a square base of length x cm and height h cm,  to take onto the aircraft.

 

 

 

 

 

 

 

 

(i) Show that the volume in cubic centimeters is given by   V =115x2 -2 x3  (ii)Hence find the maximum volume.

Question 10:

n the Kurramurra Theatre, rows of seats are labelled alphabetically, starting with Row A. Row A has seats numbered 1 to 27, Row B has seats numbered 1 to 29, Row C has seats numbered 1 to 31, and so on until the last row of the theatre, Row M. 

i) How many seats are in Row M? 

ii) What is the total number of seats in Kurramurra Theatre?